3.5.82 \(\int \sec ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx\) [482]

3.5.82.1 Optimal result
3.5.82.2 Mathematica [A] (verified)
3.5.82.3 Rubi [A] (verified)
3.5.82.4 Maple [B] (verified)
3.5.82.5 Fricas [C] (verification not implemented)
3.5.82.6 Sympy [F]
3.5.82.7 Maxima [F]
3.5.82.8 Giac [F]
3.5.82.9 Mupad [F(-1)]

3.5.82.1 Optimal result

Integrand size = 23, antiderivative size = 248 \[ \int \sec ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=-\frac {\left (4 a^2-3 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{6 \left (a^2-b^2\right ) d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{3 d \sqrt {a+b \sin (c+d x)}}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{6 \left (a^2-b^2\right ) d}+\frac {\sec ^2(c+d x) \sqrt {a+b \sin (c+d x)} \tan (c+d x)}{3 d} \]

output
-1/6*sec(d*x+c)*(a*b-(4*a^2-3*b^2)*sin(d*x+c))*(a+b*sin(d*x+c))^(1/2)/(a^2 
-b^2)/d+1/6*(4*a^2-3*b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/ 
4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2)) 
*(a+b*sin(d*x+c))^(1/2)/(a^2-b^2)/d/((a+b*sin(d*x+c))/(a+b))^(1/2)-2/3*a*( 
sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos 
(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))^( 
1/2)/d/(a+b*sin(d*x+c))^(1/2)+1/3*sec(d*x+c)^2*(a+b*sin(d*x+c))^(1/2)*tan( 
d*x+c)/d
 
3.5.82.2 Mathematica [A] (verified)

Time = 2.26 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.09 \[ \int \sec ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\frac {\left (4 a^3+4 a^2 b-3 a b^2-3 b^3\right ) E\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}-4 a \left (a^2-b^2\right ) \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}+\frac {1}{8} \sec ^3(c+d x) \left (8 a^2 b-11 b^3+\left (-12 a^2 b+8 b^3\right ) \cos (2 (c+d x))+\left (-4 a^2 b+3 b^3\right ) \cos (4 (c+d x))+24 a^3 \sin (c+d x)-24 a b^2 \sin (c+d x)+8 a^3 \sin (3 (c+d x))-8 a b^2 \sin (3 (c+d x))\right )}{6 (a-b) (a+b) d \sqrt {a+b \sin (c+d x)}} \]

input
Integrate[Sec[c + d*x]^4*Sqrt[a + b*Sin[c + d*x]],x]
 
output
((4*a^3 + 4*a^2*b - 3*a*b^2 - 3*b^3)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b 
)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] - 4*a*(a^2 - b^2)*EllipticF[ 
(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] + 
 (Sec[c + d*x]^3*(8*a^2*b - 11*b^3 + (-12*a^2*b + 8*b^3)*Cos[2*(c + d*x)] 
+ (-4*a^2*b + 3*b^3)*Cos[4*(c + d*x)] + 24*a^3*Sin[c + d*x] - 24*a*b^2*Sin 
[c + d*x] + 8*a^3*Sin[3*(c + d*x)] - 8*a*b^2*Sin[3*(c + d*x)]))/8)/(6*(a - 
 b)*(a + b)*d*Sqrt[a + b*Sin[c + d*x]])
 
3.5.82.3 Rubi [A] (verified)

Time = 1.22 (sec) , antiderivative size = 261, normalized size of antiderivative = 1.05, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.652, Rules used = {3042, 3169, 27, 3042, 3345, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin (c+d x)}}{\cos (c+d x)^4}dx\)

\(\Big \downarrow \) 3169

\(\displaystyle \frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}-\frac {1}{3} \int -\frac {\sec ^2(c+d x) (4 a+3 b \sin (c+d x))}{2 \sqrt {a+b \sin (c+d x)}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \int \frac {\sec ^2(c+d x) (4 a+3 b \sin (c+d x))}{\sqrt {a+b \sin (c+d x)}}dx+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \int \frac {4 a+3 b \sin (c+d x)}{\cos (c+d x)^2 \sqrt {a+b \sin (c+d x)}}dx+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3345

\(\displaystyle \frac {1}{6} \left (-\frac {\int \frac {a b^2+\left (4 a^2-3 b^2\right ) \sin (c+d x) b}{2 \sqrt {a+b \sin (c+d x)}}dx}{a^2-b^2}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}\right )+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \left (-\frac {\int \frac {a b^2+\left (4 a^2-3 b^2\right ) \sin (c+d x) b}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}\right )+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \left (-\frac {\int \frac {a b^2+\left (4 a^2-3 b^2\right ) \sin (c+d x) b}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}\right )+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {1}{6} \left (-\frac {\left (4 a^2-3 b^2\right ) \int \sqrt {a+b \sin (c+d x)}dx-4 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}\right )+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \left (-\frac {\left (4 a^2-3 b^2\right ) \int \sqrt {a+b \sin (c+d x)}dx-4 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}\right )+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{6} \left (-\frac {\frac {\left (4 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-4 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}\right )+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \left (-\frac {\frac {\left (4 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-4 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}\right )+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{6} \left (-\frac {\frac {2 \left (4 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-4 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}\right )+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{6} \left (-\frac {\frac {2 \left (4 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {4 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}\right )+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \left (-\frac {\frac {2 \left (4 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {4 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}\right )+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{6} \left (-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} \left (a b-\left (4 a^2-3 b^2\right ) \sin (c+d x)\right )}{d \left (a^2-b^2\right )}-\frac {\frac {2 \left (4 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {8 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}}{2 \left (a^2-b^2\right )}\right )+\frac {\tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}\)

input
Int[Sec[c + d*x]^4*Sqrt[a + b*Sin[c + d*x]],x]
 
output
(-((Sec[c + d*x]*Sqrt[a + b*Sin[c + d*x]]*(a*b - (4*a^2 - 3*b^2)*Sin[c + d 
*x]))/((a^2 - b^2)*d)) - ((2*(4*a^2 - 3*b^2)*EllipticE[(c - Pi/2 + d*x)/2, 
 (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(d*Sqrt[(a + b*Sin[c + d*x])/(a 
+ b)]) - (8*a*(a^2 - b^2)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqr 
t[(a + b*Sin[c + d*x])/(a + b)])/(d*Sqrt[a + b*Sin[c + d*x]]))/(2*(a^2 - b 
^2)))/6 + (Sec[c + d*x]^2*Sqrt[a + b*Sin[c + d*x]]*Tan[c + d*x])/(3*d)
 

3.5.82.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3169
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-(g*Cos[e + f*x])^(p + 1))*(a + b*Sin[e + f*x 
])^m*(Sin[e + f*x]/(f*g*(p + 1))), x] + Simp[1/(g^2*(p + 1))   Int[(g*Cos[e 
 + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1)*(a*(p + 2) + b*(m + p + 2)*Si 
n[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && Lt 
Q[0, m, 1] && LtQ[p, -1] && (IntegersQ[2*m, 2*p] || IntegerQ[m])
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3345
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(g*Co 
s[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c - a*d - (a*c - b*d)* 
Sin[e + f*x])/(f*g*(a^2 - b^2)*(p + 1))), x] + Simp[1/(g^2*(a^2 - b^2)*(p + 
 1))   Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m*Simp[c*(a^2*(p + 
 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[e + f*x], 
x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && Lt 
Q[p, -1] && IntegerQ[2*m]
 
3.5.82.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1200\) vs. \(2(294)=588\).

Time = 2.46 (sec) , antiderivative size = 1201, normalized size of antiderivative = 4.84

method result size
default \(\text {Expression too large to display}\) \(1201\)

input
int(sec(d*x+c)^4*(a+b*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/6*(b*cos(d*x+c)^2*sin(d*x+c)+a*cos(d*x+c)^2)^(1/2)*(4*EllipticF((b/(a-b) 
*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*(-b/(a-b)*sin(d*x+c)-b/(a- 
b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(b/(a-b)*sin(d*x+c)+a/(a-b)) 
^(1/2)*a^3*b*cos(d*x+c)^2-3*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),( 
(a-b)/(a+b))^(1/2))*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+ 
c)+b/(a+b))^(1/2)*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*a^2*b^2*cos(d*x+c)^2- 
4*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*(-b/(a 
-b)*sin(d*x+c)-b/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(b/(a-b) 
*sin(d*x+c)+a/(a-b))^(1/2)*a*b^3*cos(d*x+c)^2+3*EllipticF((b/(a-b)*sin(d*x 
+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2 
)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*b 
^4*cos(d*x+c)^2-4*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticE((b/(a-b)*s 
in(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*(-b/(a+b)*sin(d*x+c)+b/(a+b) 
)^(1/2)*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*a^4*cos(d*x+c)^2+7*(-b/(a-b)*si 
n(d*x+c)-b/(a-b))^(1/2)*EllipticE((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b 
)/(a+b))^(1/2))*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(b/(a-b)*sin(d*x+c)+a/ 
(a-b))^(1/2)*a^2*b^2*cos(d*x+c)^2-3*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*El 
lipticE((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*(-b/(a+b)* 
sin(d*x+c)+b/(a+b))^(1/2)*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*b^4*cos(d*x+c 
)^2+4*a^2*b^2*cos(d*x+c)^4-3*b^4*cos(d*x+c)^4-4*a^3*b*cos(d*x+c)^2*sin(...
 
3.5.82.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 526, normalized size of antiderivative = 2.12 \[ \int \sec ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\frac {\sqrt {2} {\left (8 \, a^{3} - 9 \, a b^{2}\right )} \sqrt {i \, b} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right ) + \sqrt {2} {\left (8 \, a^{3} - 9 \, a b^{2}\right )} \sqrt {-i \, b} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right ) + 3 \, \sqrt {2} {\left (4 i \, a^{2} b - 3 i \, b^{3}\right )} \sqrt {i \, b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right )\right ) + 3 \, \sqrt {2} {\left (-4 i \, a^{2} b + 3 i \, b^{3}\right )} \sqrt {-i \, b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right )\right ) - 6 \, {\left (a b^{2} \cos \left (d x + c\right )^{2} - {\left (2 \, a^{2} b - 2 \, b^{3} + {\left (4 \, a^{2} b - 3 \, b^{3}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )\right )} \sqrt {b \sin \left (d x + c\right ) + a}}{36 \, {\left (a^{2} b - b^{3}\right )} d \cos \left (d x + c\right )^{3}} \]

input
integrate(sec(d*x+c)^4*(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/36*(sqrt(2)*(8*a^3 - 9*a*b^2)*sqrt(I*b)*cos(d*x + c)^3*weierstrassPInver 
se(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos 
(d*x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b) + sqrt(2)*(8*a^3 - 9*a*b^2)*sqr 
t(-I*b)*cos(d*x + c)^3*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27 
*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 
2*I*a)/b) + 3*sqrt(2)*(4*I*a^2*b - 3*I*b^3)*sqrt(I*b)*cos(d*x + c)^3*weier 
strassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, weie 
rstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 
 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b)) + 3*sqrt(2)*(-4*I 
*a^2*b + 3*I*b^3)*sqrt(-I*b)*cos(d*x + c)^3*weierstrassZeta(-4/3*(4*a^2 - 
3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3*(4* 
a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) 
+ 3*I*b*sin(d*x + c) + 2*I*a)/b)) - 6*(a*b^2*cos(d*x + c)^2 - (2*a^2*b - 2 
*b^3 + (4*a^2*b - 3*b^3)*cos(d*x + c)^2)*sin(d*x + c))*sqrt(b*sin(d*x + c) 
 + a))/((a^2*b - b^3)*d*cos(d*x + c)^3)
 
3.5.82.6 Sympy [F]

\[ \int \sec ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int \sqrt {a + b \sin {\left (c + d x \right )}} \sec ^{4}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**4*(a+b*sin(d*x+c))**(1/2),x)
 
output
Integral(sqrt(a + b*sin(c + d*x))*sec(c + d*x)**4, x)
 
3.5.82.7 Maxima [F]

\[ \int \sec ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int { \sqrt {b \sin \left (d x + c\right ) + a} \sec \left (d x + c\right )^{4} \,d x } \]

input
integrate(sec(d*x+c)^4*(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*sin(d*x + c) + a)*sec(d*x + c)^4, x)
 
3.5.82.8 Giac [F]

\[ \int \sec ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int { \sqrt {b \sin \left (d x + c\right ) + a} \sec \left (d x + c\right )^{4} \,d x } \]

input
integrate(sec(d*x+c)^4*(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(b*sin(d*x + c) + a)*sec(d*x + c)^4, x)
 
3.5.82.9 Mupad [F(-1)]

Timed out. \[ \int \sec ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int \frac {\sqrt {a+b\,\sin \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^4} \,d x \]

input
int((a + b*sin(c + d*x))^(1/2)/cos(c + d*x)^4,x)
 
output
int((a + b*sin(c + d*x))^(1/2)/cos(c + d*x)^4, x)